Early Research Usage - UCLA

John W. Wallace, Jonathan Stewart, Ertugrul Taciroglu
Steve Kang, Ying Lei, Daniel Whang
Eunjong Yu, Derek Skolnik, William Elmer

Field Testing
Performance of Structural & Geotechnical Systems

- Vibration equipment
- Data acquisition & sensors
- CPT Truck & RSA
- High performance mobile network

George E. Brown, Jr. Network for Earthquake Engineering Simulation
Research Usage: nees@UCLA

• Completed Projects
 – UCSD Phase I & II (NSF)
 – UCLA Imperial Valley CPT (PEER)
 – USC/UCSD Carquinez Bridge
 – SUNY Buffalo @ Marina Del Rey (FHWA)

• Ongoing
 – UCLA Forced Vibration 4-story building (NSF)

• Upcoming
 – BYU/UCSB/USC & UCLA/UT Garner Valley (NSF, IRIS, USGS)

UCSD Camp Elliott Phase I

MK 15

Phase I: 117 sensors, wired
UCSD Camp Elliot Phase II

117 sensors, wireless

UCSD Camp Elliot Project

• UCSD Obtained funding (NSF)
 – PIs: Enrique Luco and Joel Conte
 – Characterize the Camp Elliot Site – Virtual model
• UCLA subcontract
 – Provided the equipment and personnel
 – Phase I (April 03), Phase II (Oct 03)
 – Benefits to UCLA
 • Full-capacity test of shakers, shaker synchronization
 • DAQ – wired/wireless, Experience
• 1st NEES Shared-Use Project?
I80 - Carquinez Bridge

~ 70 sensors, 3 day effort

George E. Brown, Jr. Network for Earthquake Engineering Simulation
Carquinez Bridge Project

- **UCSD/USC Project**
 - PIs: Joel Conte, Ahmed Elgamal, Sami Masri
 - Vibration data for system identification
 - Ambient, truck induced
 - November 3 – 5, 2003
- **UCLA Subcontract**
 - Equipment and personnel (shared-use)
 - Benefits to UCLA
 - Limited (wireless system problem), more experience
 - Societal Benefits
 - Rare opportunity – Bridge opening: Sat, Nov. 8, 2003
 - Rapid deployment – value of the equipment and trained personnel

Marina Del Rey CPT/RSA Project

- **SUNY Buffalo**
 - PI: S. Thevanayagam
 - Objectives were to obtain ground vibration and pore pressure measurements near a stone column installation
 - UCLA – Shared Use
 - CPT Truck & RSAs (2 day)
- **UCLA Imperial Valley CPT**
 - PI: J. Stewart
 - CPT measurements at liquefaction / non-liquefaction sites from Imperial Valley earthquake
- **Benefits UCLA ES**
 - RSA data, retrievable
 - CPT Truck use and training
UCLA Four Seasons Project

- Forced-Vibration Testing
 - Sherman Oaks, California
 - 4-story RC Building (1977)
- Damaged (yellow tag) in Northridge earthquake
 - Empty, to be demolished
- Complete System Test
 - Shakers/Sensors & DAQ
 - Mobile command center
 - Satellite, Tele-presence
 - SI Collaboration tools
 - User manuals and safety requirements

Building Location

George E. Brown, Jr. Network for Earthquake Engineering Simulation
Building Description

- Perimeter Moment Resisting Frame
 - Beam: 24” x 30”
 - Column: 24” x 24”
- Gravity Load:
 - Post-tensioned slab with drop panels (8 ½”)
 - Interior columns
- Bell caisson foundation

Typical Floor Plan

George E. Brown, Jr. Network for Earthquake Engineering Simulation

Building Damage – Northridge (1994)

- Punching shear failure at interior floor slab – column connections
- Minor damage reported at perimeter frame
 - Spalling beams/columns
 - Diagonal joint cracks
- Prior studies
 - Limited success in identifying reasons for damage

Punching shear failure at slab-column connection

George E. Brown, Jr. Network for Earthquake Engineering Simulation
Pre-Test Modeling

T = 0.66 sec; F = 92.4 k; \(A_{\text{max}} = 0.30\text{g} \)

Summary of Expected Work

- Forced-vibration testing with linear inertial shaker
 - Broadband excitation - Use records from Northridge earthquake
 - Diagonal excitation (LSSS method – modified/filtered roof motion)
- Forced-vibration testing with eccentric mass shakers
 - N-S, E-W translational vibrations and torsional vibration
 - Induce some damage and retest
- Instrumentation
 - Measure ~200 response quantities (CENS – 50 to 70 sensors)
 - Column, beam, slab, partitions, piping
- Post-testing numerical modeling and system identification studies
 - Evaluate modal properties of building, damage detection
 - Numerical simulation of tests, model improvement
 - Start with model of undamaged building and subject it to Northridge motions
Four Seasons Building - Benefits

- First Field Use
 - Linear Shaker
 - NI DAQ System
- Center for Embedded Networked Sensing (CENS) – NSF STC
 - MEM Sensors
 - Network Time Protocol
 - Additional Sensors/DAQ
- User requirements
 - Safety requirements

Four Seasons Building - Payload

- Payload or “Piggyback” Project
- T. Hutchinson, UC Irvine
 - NSF Funded Project
 - Performance of laboratory equipment
 - Install equipment on the 4th floor and monitor responses
 - Objectives: Simulation, Multi-axis data (torsion), Field deployment
- 1st NEES Payload Project?
Early Use - Observations

• Shakers Installation
 – Scheduling, crane
 – Waterproofing membrane

• Sensor Installation
 – Challenge (strain, displ.)
 – Demolition required for partitions, floor tiles, plaster

• Environment - challenging
 – No electricity (generators), plumbing
 – Broken glass, dust, ??
 – Transients

Early Use - Observations

• Security
 – Secure rooms on each floor
 – Sensors, wires (wireless)
 – Costly (time and personnel)

• Risk Management
 – HazMat Survey ($5600)
 – Mold, asbestos, lead
 – Safety training & equipment

• Field locations
 – Travel costs & time

• University barriers
 – Willing and cooperative owner
 – Lease agreement (12 months)
 – UCOP policies
Early Use - Observations

- Interactions – Researchers and ES
 - SOC Users Guide, ES web sites, Training
 - Successful projects
 - Careful and thoughtful planning
 - Detailed and frequent communications
 - Reasonable expectations
 - Patience and flexibility (particularly in the early stages)
- NEES Shared-use model (SOC)
 - Schedule, Budget, Scope of work
 - Optimistic schedule, more sensors, more tests ($$)
 - Objective – High quality research
- Early nees@UCLA use has been extremely helpful in developing our ES, and very positive experience